X^2/0.60-x=1.8*10^-5

Simple and best practice solution for X^2/0.60-x=1.8*10^-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X^2/0.60-x=1.8*10^-5 equation:



X^2/0.60-X=1.8*10^-5
We move all terms to the left:
X^2/0.60-X-(1.8*10^-5)=0
We add all the numbers together, and all the variables
X^2/0.60-1X-5-1.8E=0
We multiply all the terms by the denominator
X^2-1X*0.60-5*0.60-(1.8E)*0.60=0
We add all the numbers together, and all the variables
X^2-1X*0.60-5*0.60-(4.8929072912263)*0.60=0
We add all the numbers together, and all the variables
X^2-1X*0.60-5.9357443747358=0
Wy multiply elements
X^2-0.6X-5.9357443747358=0
a = 1; b = -0.6; c = -5.9357443747358;
Δ = b2-4ac
Δ = -0.62-4·1·(-5.9357443747358)
Δ = 24.102977498943
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-0.6)-\sqrt{24.102977498943}}{2*1}=\frac{0.6-\sqrt{24.102977498943}}{2} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-0.6)+\sqrt{24.102977498943}}{2*1}=\frac{0.6+\sqrt{24.102977498943}}{2} $

See similar equations:

| 6/3=x/18 | | 5q+2q-4q-q=12 | | 15n-7n-7n=9 | | -15.91-17.7=-11.61-16.7b | | 5x+11+4=12 | | 30/100=p10 | | -2(2+3n)=8 | | 55-(2c+4)=4(c+6)+c | | 18x=9*19 | | 5-(3c+4)=4(c+6)+c | | 5x-2x+x-2x-x=18 | | z−2.3=0.46* | | F(x)=(x-3)2+5 | | (6r-4)+94=180 | | 7a-19=5a+5 | | x^2+40=-13 | | -6y=-3y+96 | | 2+n/3=6 | | h(2)=1600-16(2)^2 | | -10=5x=5 | | 16x+11=63 | | 6x-16+3x+18=137 | | 12=3p. | | z÷7=28 | | 12=0.5a* | | 5x+2(3x+6)=-32 | | -132=12w | | 4(3x-7)=6x | | t=80-16t2+3.5 | | -2(v+20)=10 | | 4x+9+x+17=151 | | -6(5x-4)=0 |

Equations solver categories